| [1] |
黄庆卿, 胡欣堪, 韩 延, 等. 多源域子域自适应的滚动轴承剩余寿命预测方法[J]. 电子测量与仪器学报, 2022, 36(10):100-107.
|
| [2] |
裴 洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8):1-13.
|
| [3] |
AL AZZAWI D, MONCAYO H, PERHINSCHI M G, et al. Comparison of immunity -based schemes for aircraft failure detection and identification [J]. Engineering Applications of Artificial Intelligence,2016, 52: 181-193.
|
| [4] |
CUI L L, WANG X, WANG H Q, et al. Research on remaining useful life prediction of rolling element bearings based on time -varying Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(6): 2858-2867.
|
| [5] |
LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773.
|
| [6] |
LIN Y H, LI G H. A Bayesian deep learning framework for RUL prediction incorporating uncertainty quantification and calibration[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 7274-7284.
|
| [7] |
李天梅, 司小胜, 刘 翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.
|
| [8] |
SATEESH BABU G, ZH AO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016, April 16 -19, 2016 , Dallas, TX, USA.Cham: Springer International Publishing, 2016: 214-228.
|
| [9] |
CHOW T W S, FANG Y. A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics[J]. IEEE Transactions on Industrial Electronics, 1998, 45(1):
|
|
151-161.
|
| [10] |
WU Y T, YUAN M, DONG S P, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2018, 275: 167-179.
|
| [11] |
GUO L, LI N P, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings [J].Neurocomputing, 2017, 240: 98-109.
|
| [12] |
BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL].(2018-03-04)[2024-03-15]. https://arxiv.org/pdf/1803.01271.pdf.
|
| [13] |
HE K, SU Z Q, TIAN X Q, et al. RUL prediction of wind turbine gearbox bearings based on self -calibration temporal convolutional network [J].IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
|
| [14] |
WANG Y W, DENG L, ZHENG L Y, et al. Temporal convolutional network with soft thresholding and attention mechanism for machineryprognostics[J]. Journal of Manufacturing Systems, 2021, 60: 512-526.
|
| [15] |
梁浩鹏, 曹 洁, 赵小强. 基于并行双向时间卷积网络和双向长短期记忆网络的轴承剩余使用寿命预测方法[J/OL]. 控制与决策:1-9[2024-03-15]. https://doi.org/10.13195/j.kzyjc.2023.0152.
|
| [16] |
卢 瑾, 张永平. 基于注意力机制的滚动轴承剩余使用寿命预测方法[J]. 机电工程, 2023, 40(4):516-521.
|
| [17] |
WANG H Q, ZHANG X S, GUO X D, et al. Remaining useful life prediction of bearings based on multiple-feature fusion health indicator and weighted temporal convolution network[J]. Measurement Science and Technology, 2022, 33(10): 104003.
|
| [18] |
NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//IEEE International Conference on Prognostics and Health Management,
|
|
2012, Denver, CO, USA. PHM′12. IEEE Catalog Number: CPF12PHMCDR, 2012: 1-8.
|