taptap下载安装安卓学报 ›› 2025, Vol. 43 ›› Issue (3): 15-23.

• 民机安全性与适航 • 上一篇    下一篇

基于 GMTCN 模型的轴承剩余寿命预测方法

  

  1. taptap下载安装安卓 a.电子信息与自动化学院;b.中欧航空工程师学院,天津 300300
  • 收稿日期:2023-12-21 修回日期:2024-05-06 出版日期:2025-07-12 发布日期:2025-07-12
  • 作者简介:郭润夏(1981— ),男,山东诸城人,教授,博士,研究方向为机载设备故障诊断与健康管理、飞行器控制
  • 基金资助:
    国家自然科学基金项目(62173331);天津市科技计划项目(23JCYBJC00060);航空科学基金项目(2019ZD067007);天津市优秀青年学者人才培养专项(TJTZJH-QNBJRC-2-19);天津市教委科研计划项目(2023KJ222)

Prediction method for bearing remaining life based on GMTCN model

  1. a. College of Electronic Information and Automation; b. Sino-European Institute of Aviation Engineering, CAUC, Tianjin 300300, China
  • Received:2023-12-21 Revised:2024-05-06 Online:2025-07-12 Published:2025-07-12

摘要:

针对现有的轴承剩余寿命预测方法在处理多传感器数据时难以有效提取退化特征的问题,本文提出了一
种基于全局注意力的多尺度时间卷积网络(GMTCN, global attention and multi-scale time convolutional network)模型的轴承剩余寿命预测方法。 首先,采用 GMTCN 模型对轴承的多传感器信号进行处理,借助两种
不同策略的时间卷积网络提取轴承在不同尺度下的退化特征;其次,利用全局注意力机制权衡来自不同传
感器和时间步长的数据在轴承剩余寿命预测中的贡献,并将提取的多尺度特征进行融合;最后,对轴承进行
剩余寿命预测。 为对该方法进行性能评估,使用 PHM2012 轴承数据集和加速疲劳实验平台采集的退化数
据得到的轴承数据集进行剩余寿命预测,得到的均方根误差(RMSE,root mean square error)和平均绝对
误差(MAE,mean absolute error)均低于其他方法,评分函数(SCORE)的平均值在一定程度上有所提高,
证明了方法的有效性。

关键词:

Abstract:

Aiming at the problem that the existing prediction methods for bearing remaining life are difficult to effectively
extract degradation features when dealing with multi-sensor data, a prediction method for bearing remaining life
based on global attention and multi-scale time convolutional network (GMTCN) was proposed. Firstly, the GMTCN
model was used to process the multi-sensor signals of the bearing, and the degradation features of the bearing at
different scales were extracted with the help of two different strategies of temporal convolutional networks.
Secondly, the global attention mechanism was used to balance the contribution of data from different sensors and
time steps in the bearing remaining life prediction, and the extracted multi-scale features were fused. Finally, the
remaining life of the bearing is predicted. To assess the performance of this method, remaining life prediction were
conducted using the PHM2012 bearing dataset and a bearing dataset obtained from degradation data collected on
an accelerated fatigue testing platform. The root mean square error (RMSE) and mean absolute error (MAE) values
obtained were lower than other methods, while the average value of SCORE was increased to a certain extent,
proving the effectiveness of the method.

Key words:

中图分类号: 

Baidu
map