taptap点点手机网页 ›› taptap点点手机网页版 , taptap点点手机网页版 ›› Issue (3): 8-14.

• 民机安全性与适航 • 上一篇    下一篇

基于 STPA 的民机起落架收放系统风险因素分析研究

  

  1. taptap下载安装安卓 a.交通科学与工程学院;b.安全科学与工程学院,天津 300300
  • 收稿日期:2023-04-14 修回日期:2023-06-20 出版日期:2025-07-12 发布日期:2025-07-12
  • 作者简介:贾宝惠(1971— ),女,山西运城人,教授,硕士,研究方向为维修工程分析与持续适航技术研究
  • 基金资助:
    国家自然科学基金项目(U2033209)

Research on risk factors analysis of civil aircraft landing gear retraction
system based on STPA

  1. a. College of Traffic Science and Engineering; b. College of Safety Science and Engineering; CAUC, Tianjin 300300, China 
  • Received:2023-04-14 Revised:2023-06-20 Online:2025-07-12 Published:2025-07-12

摘要:

本文基于系统理论过程分析(STPA,system theoretic process analysis)方法,识别确定了飞机起落架收放系
统的系统级危险,构建了系统的人机控制、系统功能动作和反馈等运行全过程的行为原理框图模型,识别
系统运行过程中的不安全控制行为(UCA, unsafe control action)并分析导致 UCA 发生的风险因素。 研究表
明,该方法不仅能够分析出传统安全分析方法识别到的所有组件物理故障因素,还能识别出位置作动控制
组件(PACU, position and actuate on control unit)核心处理器算法延迟、机组成员误操作等由人机交互导致
UCA 发生的风险因素。 本文研究结果可为民用飞机研发和使用全过程的安全性分析提供理论依据和方法
支持。

关键词:

Abstract:

In this paper, based on system theoretic process analysis (STPA) method, the system level hazards of aircraft landing gear retraction system were identified and determined, and the behavior principle block diagram model of human-machine control, system functional action and feedback of the whole operation process of the system was constructed. The unsafe control action (UCA) in the operation process of the system was identified and the risk factors
leading to UCA were analyzed. The research showed that the method can not only enable identification of all component physical failure factors recognized by traditional safety analysis methods, but also identify risk factors leading to UCA incidents resulting from human-machine interaction, such as position and actuate on control unit
(PACU) core processor algorithm delays and crew member misoperation. The research results of this paper can
provide theoretical basis and methodological support for safety analysis of the entire process for civil aircraft development and application.

Key words:

中图分类号: 

Baidu
map