taptap下载安装安卓学报 ›› 2025, Vol. 43 ›› Issue (1): 89-96.

• 通用航空与无人机 • 上一篇    

基于改进人工鱼群算法的城市物流无人机航线规划

岳仁田 1 ,侯博文 2
  

  1. 1. taptap下载安装安卓空中交通管理学院,天津 300300;2. 中国民航科学技术研究院航行新技术研究所,北京 100028
  • 收稿日期:2024-03-29 修回日期:2024-05-14 出版日期:2025-04-09 发布日期:2025-04-09
  • 作者简介:岳仁田(1978— ),男,山东日照人,副教授,博士,研究方向为空中交通运输规划与管理
  • 基金资助:
    中央高校基本科研业务费专项(3122022103);天津市应用基础研究多元投入基金项目(21JCYBJCO0700)

Route planning of urban logistics UAV based on improved artificial fish
swarm algorithm

YUE Rentian1 , HOU Bowen2
  

  1. 1. College of Air Traffic Management, CAUC, Tianjin 300300, China; 2. Institute of New Navigation, China Academy of
    Civil Aviation Science and Technology, Beijing 100028, China 
  • Received:2024-03-29 Revised:2024-05-14 Online:2025-04-09 Published:2025-04-09

摘要:

为了安全、高效地解决物流无人机(UAV, unmanned aerial vehicle)三维空间航线规划问题,首先,本文在考
虑空间避障和地面人口密度的基础上通过改进栅格法对规划环境进行建模,以航程代价、栅格风险值代价
和高度调整代价之和最小作为目标函数建立物流 UAV 航线规划模型,并根据 UAV 性能设置约束条件。 其
次,对标准人工鱼群算法(AFSA, artificial fish swarm algorithm)进行改进,增加鱼群跳跃行为和栅格禁忌
表,利用改进 AFSA 对模型进行求解。最后,通过仿真算例将改进后的 AFSA 与其他 3 种算法进行了对比并
对改进后的 AFSA 进行了参数灵敏度分析。结果表明:改进后的 AFSA 在收敛速度上优于其他 3 种算法,相
对于标准 AFSA 收敛时间降低了 9.9%;设置较大的感知范围参数值,航线规划效率更高,在设置步长参数
时则需要根据规划环境进行调整。 改进后的 AFSA 可为提升物流 UAV 三维空间航线规划效率提供借鉴。

关键词:

Abstract:

In order to safely and efficiently solve the problem of three-dimensional spatial route planning for logistics unmanned aerial vehicles (UAV), this paper first models the planning environment by improving the grid method
based on spatial obstacle avoidance and ground population density. The route planning model for logistics UAV is
established with the objective function of minimizing the sum of distance cost, grid risk value cost and height adjustment cost, and constraints are set according to UAV performance. Secondly, the standard artificial fish swarm
algorithm (AFSA) is improve by adding fish swarm jumping behavior and grid taboo table, and the improved AFSA
is employed to solve the model. Finally, the improved AFSA was compared with three other algorithms through
simulation examples and parameter sensitivity analysis was conducted on the improved AFSA. The results show
that the improved AFSA had better convergence speed than the other three algorithms, with a 9.9% reduction in
convergence time compared to the standard AFSA. Setting larger perception range parameter values resulted in
higher efficiency in route planning, while the step size parameter need to be adjusted according to the planning environment. The improved AFSA can provide reference for improving the efficiency of logistics UAV three-dimensional spatial route planning.

Key words:

中图分类号: 

Baidu
map