|
[1]
|
|
JUAREZ-ROBLES D, JEEVARAJAN J A, MUKHERJEE P P. Degra-
|
|
dation-safety analytics in lithium-ion cells: part I. aging under charge/
|
|
discharge cycling[J]. Journal of the Electrochemical Society, 2020, 167
|
| (16) |
: 160510.
|
|
[2]
|
|
BALAGOPAL B, HUANG C S, CHOW M Y. Effect of calendar aging on
|
|
li ion battery degradation and SOH[C]//IECON 2017-43rd Annual Con-
|
|
ference of the IEEE Industrial Electronics Society, October 29-Novem-
|
|
ber 1, 2017, Beijing, China. IEEE, 2017: 7647-7652.
|
|
[3]
|
|
SCHUSTER S F, BACH T, FLEDER E, et al. Nonlinear aging charac-
|
|
teristics of lithium-ion cells under different operational conditions[J].
|
|
Journal of Energy Storage, 2015, 1: 44-53.
|
|
[4]
|
|
KLETT M, ERIKSSON R, GROOT J, et al. Non-uniform aging of cycled
|
|
commercial LiFePO4//graphite cylindrical cells revealed by post-mortem
|
|
analysis[J]. Journal of Power Sources, 2014, 257: 126-137.
|
|
[5]
|
|
ROTH E P, DOUGHTY D H. Thermal abuse performance of high-pow-
|
|
er 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2): 308-
|
|
318.
|
|
[6]
|
|
FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of
|
|
cyclic ageing at high-rate and low temperatures and safety in lithiumion batteries[J]. Journal of Power Sources, 2015, 274: 432-439.
|
|
[7]
|
|
JUAREZ-ROBLES D, AZAM S, JEEVARAJAN J A, et al. Degradation safety analytics in lithium-ion cells and modules: part Ⅱ. overcharge
|
|
and external short circuit scenarios[J]. Journal of the Electrochemical
|
|
Society, 2021, 168(5): 050535.
|
|
[8]
|
|
ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and
|
|
modeling approaches of the thermal runaway of fresh and aged lithiumion batteries[J]. Journal of Power Sources, 2018, 399: 264-273.
|
|
[9]
|
|
张青松, 曲奕润. 循环老化三元锂离子电池热失控气体毒性研究[J].
|
|
北京航空航天大学学报, 2024, 50(6): 1761-1769.
|
| [10] |
梁峰伟, 夏煜华, 张玉龙, 等. 快充下锂离子电池析锂机制、模型及快
|
|
充策略研究[J]. 稀有金属, 2022, 46(9): 1235-1243.
|
| [11] |
WANG Z, WANG J. An experimental investigation of the degradation
|
|
and combustion behaviors associated with lithium ion batteries after dif-
|
|
ferent aging treatments[J]. Journal of Cleaner Production, 2020, 272:
|
|
122708.
|
| [12] |
WANG Q S, SUN J H, YAO X L, et al. Thermal stability of LiPF6/EC+
|
|
DEC electrolyte with charged electrodes for lithium ion batteries [J].
|
|
Thermochimica Acta, 2005, 437(1/2): 12-16.
|
| [13] |
GUO J, LI Y Q, PEDERSEN K, et al. Lithium-ion battery operation,
|
|
degradation, and aging mechanism in electric vehicles: an overview[J].
|
|
Energies, 2021, 14(17): 5220.
|
| [14] |
陈芬放. 高能量密度 NCA 正极锂离子电池老化过程产热特性研究
|
| [D] |
. 杭州: 浙江大学, 2021.
|
| [15] |
JALKANEN K, KARPPINEN J, SKOGSTR魻M L, et al. Cycle aging of
|
|
commercial NMC/graphite pouch cells at different temperatures[J]. Applied Energy, 2015, 154: 160-172.
|
| [16] |
GERELT-OD B, KIM J, SHIN E, et al. In situ Raman investigation of
|
|
resting thermal effects on gas emission in charged commercial 18650
|
|
lithium ion batteries[J]. Journal of Industrial and Engineering Chemistry,
|
|
2021, 96: 339-344.
|
| [17] |
STROE A I, KNAP V, STROE D I. Comparison of lithium-ion battery
|
|
performance at beginning-of-life and end-of-life[J]. Microelectronics
|
|
Reliability, 2018, 88/89/90: 1251-1255.
|
| [18] |
李天奇, 李 悦, 潘崇超. 锂离子电池恒流充电的温度及产热特性
|
|
分析[J]. 电源技术, 2021, 45(7): 872-876.
|
| [19] |
陈述林, 郭 密, 王珍珍. 内阻对锂离子电池产热功率的影响[J]. 电
|
|
池, 2021, 51(4): 385-388.
|
| [20] |
张志超, 郑莉莉, 杜光超, 等. 锂离子电池充放电过程中产热特性研
|
|
究综述[J]. 储能科学与技术, 2019, 8(S1): 31-37.
|