| [1] | WELCH L. Lower bounds on the maximum cross correlation of signals (Corresp.)[J]. IEEE Transactions on Information Theory, 1974, 20 (3): 397-399. | 
																													
																						| [2] | XIA P F, ZHOU S L, GIANNAKIS G B. Achieving the Welch bound with difference sets[J]. IEEE Transactions on Information Theory, 2005, 51(5): 1900-1907. | 
																													
																						| [3] | MASSEY J L, MITTELHOLZER T. Welch′s bound and sequence sets for code-division multiple-access systems[M]//Sequences Ⅱ: Methods in Communication, Security, and Computer Science. New York: Springer, 1993: 63-78. | 
																													
																						| [4] | DELSARTE P, GOETHALS J M, SEIDEL J J. Spherical codes and designs[J]. Geometriae Dedicata, 1977, 6(3): 363-388. | 
																													
																						| [5] | LI C J, YUE Q, HUANG Y W. Two families of nearly optimal codebooks [J].Designs, Codes and Cryptography, 2015, 75(1): 43-57. | 
																													
																						| [6] | YU N Y, FENG K Q, ZHANG A X. A new class of near-optimal partial Fourier codebooks from an almost difference set[J]. Designs, Codes and Cryptography, 2014, 71(3): 493-501. | 
																													
																						| [7] | ZHANG A X, FENG K Q. Two classes of codebooks nearly meeting the welch bound[J]. IEEE Transactions on Information Theory, 2012, 58(4): 2507-2511. | 
																													
																						| [8] | TANG X H, ZHOU Z C. New nearly optimal codebooks from relative difference sets[J]. Advances in Mathematics of Communications, 2011, 5(3): 521-527. | 
																													
																						| [9] | HONG S, PARK H, NO J S, et al. Near -optimal partial hadamard codebook construction using binary sequences obtained from quadratic residue mapping[J]. IEEE Transactions on Information Theory, 2014, 60 (6): 3698-3705. [10] YU N Y. A construction of codebooks associated with binary sequences [J]. IEEE Transactions on Information Theory, 2012, 58(8): 5522-5533. | 
																													
																						| [11] | HENG Z L. Nearly optimal codebooks based on generalized Jacobi sums [J]. Discrete Applied Mathematics, 2018, 250: 227-240. | 
																													
																						| [12] | HENG Z L, DING C S, YUE Q. New constructions of asymptotically optimal codebooks with multiplicative characters[J]. IEEE Transactions on Information Theory, 2017, 63(10): 6179-6187. | 
																													
																						| [13] | LUO G J, CAO X W. Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum[J]. IEEE Transactions on Information Theory, 2018, 64(10): 6498-6505. | 
																													
																						| [14] | LUO G J, CAO X W. New constructions of codebooks asymptotically achieving the welch bound[C]//2018 IEEE International Symposium on Information Theory, June 17 -22, 2018, Vail, CO, USA. IEEE, 2018: 2346-2350. | 
																													
																						| [15] | QIAN L Q, CAO X W, LU W, et al. New constructions of asymptotically optimal codebooks via character sums over a local ring[EB/OL]. (201906-13) [2021-03-03]. https: //arxiv.org/abs/1906.05523. | 
																													
																						| [16] | WAN Z X. Lectures on finite fields and Galois rings[M]. Singapore: World Scientific, 2003. | 
																													
																						| [17] | LANGEVIN P, SOL魪P. Gauss sums over quasi-frobenius rings[C]//The 5th International Conference on Finite Fields and Applications Fq5, August 2-6, 1999, Augsburg, Germany. Berlin, Heidelberg: Finite Fields and Applications, 1999: 329-340. | 
																													
																						| [18] | WANG J. On the Jacobi sums for finite commutative rings with identity [J]. Journal of Number Theory, 1994, 48(3): 284-290. |