讲座题目:From Sub-Gaussian Non-asymptotic Inference to Robust Statistical Learning under Infinite Variance
讲座内容:In non-asymptotic statistical inferences, the variance-type parameters of sub-Gaussian distributions are of paramount importance. However, directly estimating these parameters using the empirical moment generating function is infeasible. To address this, we suggest using the sub-Gaussian intrinsic moment norm achieved by maximizing a sequence of normalized moments. In practice, we offer an intuitive method for checking sub-Gaussian data with a finite sample size using the sub-Gaussian plot. Intrinsic moment norm can be robustly estimated via a simple plug-in approach. Our theoretical findings are also applicable to the multi-armed bandit scenario.
In robust statistical learning, we thoroughly study a large family of robust statistical regressions by the proposed log-truncated M-estimator under the condition that the data have (1+ε)-th moment. With the Lipschitz conditions on the given loss functions and few moment assumptions, we obtain the excess risk bound and the consistency of various convex regressions [such as robust quantile regression and robust GLMs] as well as non-convex regressions including robust deep neural network regressions.
报告人:张慧铭副教授,北京航空航天大学人工智能研究院
报告时间: 2023年9月17日 14:00-15:00。
报告地点:南教1-120教室;同时线上:#腾讯会议:347-5268-0550
报告人简介:
张慧铭,北航人工智能研究院的副教授(准聘)。北京大学获得统计学博士(2016-2020);曾在澳门大学担任濠江学者博士后研究员(2020-2022)。研究方向:非渐近推断、高维概率统计、稳健估计、机器学习与深度学习理论、函数型数据等。发表SCI论文21篇(包括机器学习与人工智能领域顶刊JMLR;统计顶刊JASA,Biometrika;精算顶刊IME; 统计、数学、与物理主流刊Statistica Sinica, Journal of Complexity,和Physica Scripta等;谷歌学术引用超450次),其中两篇为Web of Science高被引论文。主持国自科青基一项;担任美国《数学评论》评论员,SCI期刊Mathematics (Q1,中科院三区, IF=2.592)的"高维与非渐近统计专栏"客座主编。
欢迎感兴趣的师生参加!