taptap下载安装安卓学报 ›› 2025, taptap点点手机网页 ›› Issue (3): 38-44.

• 机场工程 • taptap点点手机网页版    下一篇

基于物理信息神经网络的跑道结冰预测方法

  

  1. 1. 同济大学 a. 道路与交通工程教育部重点实验室;b. 民航飞行区设施耐久与运行安全重点实验室,上海
    201804;
    2. 上海济熠智能科技有限公司,上海
    201805
  • 收稿日期:2025-04-14 修回日期:2025-05-21 出版日期:2025-07-12 发布日期:2025-07-12
  • 通讯作者: 刘诗福(1993—),男,江西吉安人,副教授,博士,研究方向为道路与机场工程
  • 作者简介:邢馨元(2001—),女,辽宁沈阳人,硕士研究生,研究方向为道路与机场工程
  • 基金资助:
    上海市青年科技启明星项目(24QB2703000)

A runway icing prediction method based on physics-informed neural network

  1. 1a. Key Laboratory of Road and Traffic Engineering of Ministry of Education; 1b. Key Laboratory of Infrastructure Durability
    and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China;
    2. Shanghai Jiyi Intelligent Technology Co., Ltd., Shanghai 201805, China 
  • Received:2025-04-14 Revised:2025-05-21 Online:2025-07-12 Published:2025-07-12

摘要:

跑道结冰威胁航空器地面运行安全,准确预测道面温度与结冰状态至关重要。 为解决传统跑道结冰预测方
法在处理复杂工况、数据稀缺与物理一致性方面的不足,本文提出基于物理信息神经网络(PINN,physics informed neural network)的跑道结冰预测方法,将多层结构热传导与水冰相变机理嵌入深度神经网络,在稀疏数据下实现温度场与水冰状态的高精度预测,并结合自主设计的结冰模拟实验数据,将有限差分法(FDM,
finite difference method )与 PINN 求解结果进行对比。 结果表明,数据-物理联合驱动的 PINN 温度平均预测
误差较 FDM 降低约 90%,仅为 0.21 ℃,具备从有限数据重建全域温度场的能力。 此外,本文还分析了盐分降
低冰点、延缓结冰与抑制冰层生长的作用机制。 本研究可为跑道结冰预测提供新的技术路径。

关键词:

Abstract:

Runway icing poses a threat to the safety of aircraft ground operation, accurate prediction of pavement temperature
and icing state is essential. To overcome the limitations of traditional runway icing predication methods in handling
complex scenarios, limited data, and physical inconsistency, this study proposes a runway icing prediction method
based on physics-informed neural network (PINN). The model embeds multilayer structure heat conduction and
water-ice phase change mechanisms into a deep neural network, enabling precise prediction of temperature fields
and water-ice state under limited data. Experimental data from a self-designed icing simulation are used to compare the solution results of PINN with the finite difference method (FDM). Results show that the jointly driven data physics PINN reduces average prediction error of temperature by about 90% compared to FDM, with just 0.21 ℃,
which is able to reconstruct full-field temperature field from limited data. Furthermore, the study analyzes the
mechanisms of salinity lowers the freezing point, delays icing, and suppresses ice growth. These findings can provide a new technological path for runway icing prediction.

Key words:

(FDM)

中图分类号: 

Baidu
map