|
[1]
|
|
ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre
|
|
reinforced plastics: a review[J]. Composites Part B: Engineering, 2019,
|
|
166: 555-579.
|
| [2] |
中国民用航空局. 运输类飞机适航标准:CCAR-25-R3—2001[S].
|
|
北京: 中国民用航空局, 2016.
|
|
[3]
|
|
HIRANO Y, KATSUMATA S, IWAHORI Y, et al. Artificial lightning
|
|
testing on graphite/epoxy composite laminate [J]. Composites Part A:
|
|
Applied Science and Manufacturing, 2010, 41(10): 1461-1470.
|
| [4] |
姚学玲, 郭灿阳, 孙晋茹, 等. 碳纤维复合材料在雷电流作用下的损
|
|
伤仿真与试验[J]. 高电压技术, 2017, 43(5): 1400-1408.
|
| [5] |
孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续
|
|
雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12): 2764-
|
|
2771.
|
|
[6]
|
|
SUN J R, LI Y F, TIAN X Y, et al. Experimental and numerical analysis
|
|
of damage mechanisms for carbon fiber-reinforced polymer composites
|
|
subjected to lightning strikes[J]. Engineering Failure Analysis, 2020,
|
|
118: 104894.
|
|
[7]
|
|
MA X, SCARPA F, PENG H X, et al. Design of a hybrid carbon fibre/
|
|
carbon nanotube composite for enhanced lightning strike resistance[J].
|
|
Aerospace Science and Technology, 2015, 47: 367-377.
|
| [8] |
李 斌, 常 飞, 肖 尧, 等. 碳纤维增强银粉改性树脂复合材料的
|
|
雷击损伤效应[J]. 复合材料学报, 2020, 37(8): 1911-1920.
|
|
[9]
|
|
WANG F S, JI Y Y, YU X S, et al. Ablation damage assessment of air-
|
|
craft carbon fiber/epoxy composite and its protection structures suffered
|
|
from lightning strike[J]. Composite Structures, 2016, 145: 226-241.
|
| [10] |
付尚琛, 石立华, 周颖慧, 等. 喷铝涂层碳纤维增强树脂基复合材料
|
|
抗雷击性能实验及仿真[J]. 复合材料学报, 2018, 35(10): 2730-2744.
|
| [11] |
卢 翔, 赵 淼, 单泽众. 不同喷铝参数对复合材料雷击防护性能
|
|
模拟[J]. 航空材料学报, 2020, 40(2): 79-88.
|
| [12] |
GUO Y L, XU Y Z, WANG Q L, et al. Enhanced lightning strike protec-
|
|
tion of carbon fiber composites using expanded foils with anisotropic
|
|
electrical conductivity [J]. Composites Part A: Applied Science and
|
|
Manufacturing, 2019, 117: 211-218.
|
| [13] |
WANG F S, ZHANG Y, MA X T, et al. Lightning ablation suppression
|
|
of aircraft carbon/epoxy composite laminates by metal mesh[J]. Journal
|
|
of Materials Science & Technology, 2019, 35(11): 2693-2704.
|
| [14] |
罗 立, 张骁亚, 杨文锋. 金属网对航空复合材料雷击损伤的防护[J].
|
|
航空材料学报, 2020, 40(5): 70-79.
|
| [15] |
田明辉, 刘旭宇, 武 涛, 等. 铜网防护层构型对复合材料层合板雷
|
|
击烧蚀损伤的影响分析[J]. 科学技术与工程, 2022, 22(21): 9071-
|
|
9080.
|
| [16] |
SAE. Aircraft lightning environment and related test waveforms: SAEARP-5412B-2013[S]. US: SAE, 2013.
|
| [17] |
ASTM. Standard test method for compressive residual strength proper-
|
|
ties of damaged polymer matrix composite plates: ASTM D7137/D7137M-
|
|
07[S]. US: ASTM, 2007.
|
| [18] |
FOSTER P, ABDELAL G, MURPHY A. Understanding how arc attach-
|
|
ment behaviour influences the prediction of composite specimen ther-
|
|
mal loading during an artificial lightning strike test[J]. Composite Struc-
|
|
tures, 2018, 192: 671-683.
|
| [19] |
LEE J, LACY T E JR, PITTMAN C U JR, et al. Temperature-dependent
|
|
thermal decomposition of carbon/epoxy laminates subjected to simulated
|
|
lightning currents[J]. Polymer Composites, 2018, 39 (S4): E2185 -
|
|
E2198.
|
| [20] |
MILLEN S L J, MURPHY A, CATALANOTTI G, et al. Coupled ther-
|
|
mal-mechanical progressive damage model with strain and heating rate
|
|
effects for lightning strike damage assessment[J]. Applied Composite
|
|
Materials, 2019, 26(5): 1437-1459.
|