taptap下载安装安卓学报 ›› 2024, Vol. 42 ›› Issue (3): 1-12.

• 综述 •    

时间序列异常检测方法研究综述 #br#

谢丽霞 1a,王嘉敏 1a,杨宏宇 1a1b,胡 泽 1b,成 翔 1c2,张 良 3
  

  1. 1.taptap下载安装安卓 a.计算机科学与技术学院; b.安全科学与工程学院; c. 信息安全测评中心,天津 3003002. 扬州大学信息工程学院, 江苏 扬州 2251273. 亚利桑那大学信息学院,美国 亚利桑那 图森 AZ85721
  • 收稿日期:2023-11-14 修回日期:2024-01-12 出版日期:2025-01-09 发布日期:2025-01-09
  • 作者简介:谢丽霞(1974—),女,重庆人,教授,博士,研究方向为网络与系统安全、软件漏洞分析等.

Review of anomaly detection methods for time series #br#

XIE Lixia1a, WANG Jiamin1a, YANG Hongyu1a,1b, HU Ze1b, CHENG Xiang1c,2, ZHANG Liang3 #br#   

  1. (1a. School of Computer Science and Technology; 1b. School of Safety Science and Engineering; 1c. Information Security Evaluation Center, CACU, Tianjin 300300, China; 2. School of Information Engineering, Yangzhou University, Yangzhou225127, Jiangsu, China; 3. School of Information, University of Arizona, Tucson AZ85721, Arizona,
  • Received:2023-11-14 Revised:2024-01-12 Online:2025-01-09 Published:2025-01-09

摘要: 时间序列是按时间顺序排列的一组数据点或观测值在金融学气象学和股票市场分析等领域中被广泛应用时间序列数据出现异常可能意味着出现潜在问题异常事件或系统故障为了便于未来在时间序列异常检测方法设计方面开展深入研究本文首先介绍时间序列异常检测的相关概念其次展开分析国内外单变量和多变量时间序列异常检测方法之后介绍一些时间序列异常检测通用数据集并比较常见检测方法在这些数据集上的性能最后探讨未来时间序列异常检测方法设计的重点研究方向以期对相关理论和应用研究提供参考

关键词: 时间序列, 异常检测, 单变量时间序列, 多变量时间序列, 通用数据集

Abstract: Time series is a set of data points or observed values arranged in chronological order, which is widely used in the fields of finance, meteorology and stock market analysis. Abnormalities in these data may mean potential problems, abnormal events or system failures. To facilitate further research on the design of anomaly detection methods for time series in the future, the related concepts of time series anomaly detection are introduced firstly. Secondly, the anomaly detection methods for univariate and multivariate time series at home and abroad are analyzed. After that, some general datasets of anomaly detection for time series are introduced and the performance of common methods on these datasets are compared. Finally, the key research directions on the design of anomaly detection method for time series in the future are discussed, which can provide a reference for relevant theoretical and applied research.

Key words: time series, anomaly detection, univariate time series, multivariate time series, general dataset

中图分类号: 

Baidu
map