taptap下载安装安卓学报 ›› 2023, taptap点点手机网页 ›› taptap点点手机网页版 : 24-30.

• 民机安全性与适航 • 上一篇    下一篇

18650 型锂电池安全性识别

张威1a,2,3,朱家慧1b,王琼1c,张博利1d,2   

  1. (1. taptap下载安装安卓 a. 航空工程学院;b. 安全科学与工程学院;c. 理学院;d. 基础实验中心,天津 300300;2. 民航航空公司人工智能重点实验室,天津 300300;3. 中国民航航空地面特种设备研究基地,天津 300300)
  • 收稿日期:2021-11-30 修回日期:2022-01-18 出版日期:2024-01-12 发布日期:2024-01-12
  • 作者简介:男,湖南衡阳人,教授,博士,研究方向为临近航空器地面任务智能化、锂电池安全性
  • 基金资助:
    国家自然科学基金民航联合研究基金项目(U2033208)

Safety identification of 18650 lithium battery

ZHANG Wei 1a, 2, 3 , ZHU Jiahui 1b , WANG Qiong1c , ZHANG Boli 1d, 2   

  1. (1a. College of Aeronautical Engineering; 1b. College of Safety Science and Engineering; 1c. College of Science; 1d. Basic Experiment
    Center, CAUC, Tianjin 300300, China; 2. Civil Aviation Key Laboratory of Artificial Intelligence for Airlines, Tianjin 300300, China;
    3. Aviation Special Ground Equipment Research Base, Tianjin 300300, China)
  • Received:2021-11-30 Revised:2022-01-18 Online:2024-01-12 Published:2024-01-12

摘要: 目前航空货运和客运中锂电池爆炸起火的事故层出不穷,最主要原因在于锂电池内部结构状态发生变化,故锂电池内部结构状态的检测成为机场急需解决的重要问题。因此,本研究提出一种MLP(multi-layerperceptron)特征向量分类方法,该方法首先为锂电池内部结构的识别选择最佳的特征向量和分类器;然后对采集得到的锂电池图像样本进行感兴趣区域(ROI,regionofinterest)获取、图像裁剪与绘制、特征向量提取和分类器分类处理;最后,根据分类结果找到最佳的特征向量与分类器组合。实验表明:用该方法进行锂电池样本图像分类识别,其结果具有较高的准确率,可以有效降低锂电池在航空运输中的爆炸风险

Abstract:

At present, accidents of lithium battery explosions and fires in air cargo and passenger transportation are constantly occurring, mainly due to the changes of the internal structural state of lithium batteries. Therefore, the detection of internal structural state of lithium batteries has become a significant problem that airports need to solve urgently.

In this study, MLP (multi-layer perceptron) feature vector classification method is proposed. This method first selects the optimal feature vector and classifier for the recognition of the internal structure of lithium batteries and then performs ROI (region of interest) acquisition, image cropping and rendering, feature vector extraction and classifier classification processing on the collected lithium battery image samples. Finally, the optimal combina鄄 tion of feature vector and classifier are found according to the results of classification. The experiments show that the results of classification recognition of lithium battery sample image with this method have high accuracy, which can effectively reduce the explosion risk of lithium battery in air transport.

Key words: lithium battery, classification recognition, ROI acquisition, image cropping, feature extraction, classifier classification

中图分类号: 

Baidu
map