taptap下载安装安卓学报 ›› 2020, Vol. 38 ›› Issue (4): 37-42.

• 民用航空 • 上一篇    下一篇

基于改进ICEEMDAN 的航班延误短期预测研究#br#

王辉,陈超
  

  1. taptap下载安装安卓航空工程学院,天津300300
  • 出版日期:2020-08-27 发布日期:2020-08-27
  • 作者简介:王辉(1966—),男,辽宁本溪人,教授,博士,研究方向为民用航空器故障预测与可靠性技术.
  • 基金资助:
    国家自然科学基金项目(U1733128)

Flight delay short-term prediction based on improved ICEEMDAN#br#

WANG Hui, CHEN Chao#br#   

  1. College of Aeronautical Engineering, CAUC, Tianjin 300300, China
  • Online:2020-08-27 Published:2020-08-27

摘要: 针对航班延误难以实现短期精确预测的问题,提出基于改进自适应噪声集合经验模态分解(ICEEMDAN)去噪方法结合支持向量机(SVM)的预测模型。通过ICEEMDAN 算法把原始航班延误序列分解为模态分量,并使用相关函数分析判定分量中混合噪声并进行SG 滤波处理;再根据分量特征对各分量建立SVM 回归预测模型;最后将各分量模型预测值叠加得到最终预测数据。实验结果表明,改进的组合预测模型相对ICEEMDAN-SVM 模型均方根误差和平均绝对百分比误差分别降低8.7%和11.9%,预测模型对航班延误序列波动表现出良好的跟随能力和较强的泛化能力。

关键词: 航班延误短期预测, 经验模态分解, SG 滤波, 支持向量机

Abstract: Aiming at the difficulty in short-term accurate prediction of flight delay, a combined flight delay prediction model based on improved denoising method of ICEEMDAN and support vector machine (SVM) is built. Firstly, the original flight delay sequence is decomposed into stationary components by using ICEEMDAN algorithm, and then the mixed noise in the component is determined by correlation function analysis and is processed by SG filtering. Secondly, the SVM regression prediction model is established for each component according to its features; predicted values of each Component model are superimposed to obtain the final predicted data. Compared with the ICEEMDAN-SVM model, the improved combined prediction model reduces the root mean square error and mean absolute percentage error by 8.7% and 11.9% respectively, proving that the model has good following ability to flight delay sequence fluctuation and strong generalization capacity.

Key words: flight delay short-term prediction, EMD, SG filter wave, SVM

中图分类号: 

Baidu
map