taptap下载安装安卓学报 ›› 2020, Vol. 38 ›› Issue (3): 28-33.

• 民用航空 • 上一篇    下一篇

基于贝叶斯结构学习的航班保障Petri 网构建

邢志伟1,陈哲1,夏欢2,罗谦2,丛婉2,陈丰华3   

  1. (1. taptap下载安装安卓电子信息与自动化学院,天津300300;2. 中国民用航空局第二研究所机场运行与控制工程技术研究中心,成都610041;3. 广州白云国际机场股份有限公司信息科技部,广州510410)
  • 出版日期:2020-06-26 发布日期:2020-06-22
  • 基金资助:
    国家自然科学基金项目(U1533203);民航安全能力建设资金项目(PSDSA201801,PSDSA201802);成都市战略性新型产品研发补贴项目
    (2015-CP01-00158-GX);成都市产业集群协同创新项目(2016-XT00-00015-GX)

Flight support Petri net construction based on Bayesian network structure learning

XING Zhiwei1, CHEN Zhe1, XIA Huan2, LUO Qian2, CONG Wan2, CHEN Fenghua3   

  1. (1. College of Electronic Information and Automation, CAUC, Tianjin 300300, China; 2. Second Research Institute, CAAC,Chengdu 610041, China; 3. Guangzhou Baiyun International Airport Incorporated, Guangzhou 510410, China)
  • Online:2020-06-26 Published:2020-06-22
  • About author:邢志伟(1970—),男,辽宁沈阳人,教授,博士,研究方向为民航装备与系统、民航智能规划与调度、机场交通信息与控制.
  • Supported by:

摘要: 高峰时段受机场资源和时间窗口限制,航班保障实际过程较计划流程会产生一定偏差。将贝叶斯结构学习K2 算法应用到航班保障业务场景,提出航班保障的贝叶斯网络结构学习模型;结合贝叶斯网与Petri 网,形成贝叶斯无环Petri 网,以精准刻画航空器在保障流程中的状态切换;最后利用国内某枢纽机场的实际数据,构建航班保障网络结构。实验分析表明,相比计划流程,从历史数据得到的航班保障网络更符合实际流程。

关键词: Petri 网, 航班保障, 贝叶斯结构学习, K2 算法

Abstract: Due to the limitation of airport resource and time window during peak hours, the actual process of flight support will be biased compared to the planned process. K2 algorithm of Bayesian network structure learning is employed into flight support working scenarios, proposing the Bayesian network structure learning model of flight support.Bayesian network and Petri net are combined to build a Bayesian acyclic Petri net in order to accurately describe the status alternation of aircraft during flight support procedures. Finally, the actual data of one domestic hub airport are used to construct flight support network structure. Experimental analyses show that the flight support network obtained from historical data can better fit the actual working flow.

Key words: Petri net, flight support, Bayesian network structure learning, K2 algorithm

中图分类号: 

Baidu
map