taptap下载安装安卓学报

• 民用航空 • 上一篇    下一篇

基于集成学习的航空发动机故障诊断方法

徐萌,席泽西,王雍赟,李晓露   

  1. (taptap下载安装安卓电子信息与自动化学院,天津300300)
  • 收稿日期:2018-03-25 修回日期:2018-03-25 出版日期:2019-04-26 发布日期:2019-05-10
  • 作者简介:徐萌(1968—),女,江苏南京人,副教授,工学硕士,研究方向为航空发动机故障诊断,数据挖掘.

Aero-engine fault diagnosis based on ensemble learning algorithm

XU Meng, XI Zexi, WANG Yongyun, LI Xiaolu   

  1. (College of Electronic Information and Automation, CAUC, Tianjin 300300, China)
  • Received:2018-03-25 Revised:2018-03-25 Online:2019-04-26 Published:2019-05-10

摘要: 航空发动机内部结构复杂、故障耦合性高,现有机器学习模型和集成学习模型的故障诊断性能难以满足不断提升的飞行安全需求。针对该问题,提出一种基于Stacking 集成学习的航空发动机故障诊断方法。首先,依据发动机制造商渊OEM冤提供的故障报告选择4 种关键气路参数,设置飞行循环观测窗口;然后,设定训练样本集,并对输入向量做归一化预处理;最后根据典型模型的分类性能和组合差异度选择组合最优基模型、元模型,建立一种两层结构的Stacking 集成学习模型,实现航空发动机典型气路故障的智能诊断。仿真实验结果表明,该模型的精确率和召回率相比现有典型模型均可提升约3%~16%,能更好地应用于航空发
动机故障诊断。

关键词: 集成学习, 数据挖掘, 航空发动机, 气路参数, 故障诊断, 分类模型

Abstract: Complex internal structure and high coupling of faults make it difficult for precise fault diagnosis of aero-engine,in which the typical machine learning model and ensemble learning model cannot meet the rising flight safety requirements. In order to solve this problem, a fault diagnosis method of aero-engine based on Stacking ensemble learning is proposed. Firstly, four key parameters of aero-engine gas path are selected and the flight cycle observation window is set basing on fault reports provided by OEM. Then, the training data set is built and normalized preprocessing is conducted. Finally, according to the difference degree and typical model performance, the optimal base models and meta model are selected. A two-layer Stacking ensemble learning model is established to realize the intelligent diagnosis of four typical gas path faults of aeroengine. Experimental results show that compared with the typical model, the current model improves both of the accuracy and recall ratio by 3%~16%, which can be better applied to the aeroengine fault diagnosis.

Key words: ensemble learning, data mining, aero-engine, gas path parameters, fault diagnosis, classification model

中图分类号: 

Baidu
map