[1] GILBERT E N, WACWILLIAMS F J, SLOANE N J A. Codes which detect decption[J].BellSystemTechnicalJournal,1974,53(3): 405-424.
[2] SIMMONS G J. Message Authentication with Arbitration of Transmitter\Receiver Disputes[C]//AdvancesinCryptology-EUROCRYPT’87, LNCS304, Berlin, Heidelberg: Springer-Verlag, 1988: 151-165.
[3] JOHANSSON T. Lower bounds on the probability of deception in authentication with arbitration[J]. IEEE Transactions on Information Theory,1994, 40(5): 1573-1585.
[4] KUROSAWA K, OBANA S. Combinatorial bounds for authentication codes with arbitration[J]. Designs, Codes and Cryptography, 2001, 22(3): 265-281.
[5] CHEN SHANGDI, ZHAO DAWEI. Two constructions of optimal cartesian authentication codes from unitary geometry over finite fields[J].Acta Mathematicae Applicatae Sinica, Enghlish Series, 2013, 29 (4):829-836.
[6] CHEE Y M, ZHANG XIANDE, ZHANG HUI. Infinite families of optimal splitting authentication codes secure against spoofing attacks of higher order[J]. Advances in Mathematics of Communication, 2011, 5(1):59-68.
[7] BRICKELL E F, STINSON D R. Authentication Codes with Multiple Arbiters[C]//Advances in Cryptology-EUROCRYPT188, LNCS 330,Berlin, Heidelberg: Springer-Verlag, 1988: 51-55.
[8] WANG Y, SAFAVI-NAINI R. A3-Codes under Collusion Attacks[C]//ASIACRYPT’99,LNCS1716, Berlin,Heidelberg: Springer-Verlag, 1999:390-398.
[9] ZHOU ZHI. The Constructions of A2-codes from Conventional A-codes[J]. Journal of Electronics & Information Technology, 1997, 19(4): 489-493.
[10] PEI DINGYI. Message Authentication Codes[M]. Hefei: University of Science and Technology of China Press, 2009: 200-203.
[11] TOMPAM, WOLL H. How to Share a Secret with Cheaters[C]//Advances in Cryptology-CRYPT0 ’86, LNCS 263, Berlin, Heidelberg: Springer-Verlag, 1987: 261-265, .
[12] HANAOKA G, SHIKATA J, HANAOKA Y, et al. The Role of Arbiters in Asymmetric Authentication Schemes[C]//Information Security, LNCS 2851, Berlin, Heidelberg: Springer-Verlag, 2003: 428-441.
[13] JOHANSSON T. Further results on asymmetric authentication schemes[J]. Information and Computation, 1999, 151(1/2): 100-133.
[14] DESMEDT Y, YUNG M. Arbitrated Unconditionally Secure Authentication can be Unconditionally Protected Against Arbiter’s Attacks[C]//Advances in Cryptology-CRYPTO’90, LNCS 537, Berlin,Heidelberg:Springer-Verlag, 1991: 177-188.
[15] WAN ZHEXIAN. Geometry of Classical Groups over Finite Fields[M].Beijing: Science Press, 2002: 61-72.
[16] GAO YOU, LIU YANQIN. The construction of A3-code from projective spaces over finite fields[J]. WSEAS Transactions on Mathematics,2013, 12(10): 1024-1033. |