taptap点点手机网页

• 民用航空 • 上一篇    下一篇

机场能耗的时间序列混合预测方法

王力,张超   

  1. (taptap下载安装安卓电子信息与自动化学院,天津300300)
  • 收稿日期:2017-02-12 修回日期:2017-03-16 出版日期:2017-12-27 发布日期:2017-12-15
  • 作者简介:王力(1973—),男,重庆开县人,教授,博士,研究方向为最优化理论与方法.
  • 基金资助:
    中国民用航空局科技创新引导资金项目(应用技术研发类)(20150227)

Hybrid model of time series for airport energy prediction

WANG Li, ZHANG Chao   

  1. (College of Electronic Information and Automation, CAUC, Tianjin 300300, China)
  • Received:2017-02-12 Revised:2017-03-16 Online:2017-12-27 Published:2017-12-15

摘要: 为解决单一预测模型精度不高、容易陷入局部最优等问题,提出一种基于时间序列分析方法和支持向量机(SVM)的时间序列混合预测模型,从而提高模型的预测精度,并对时间序列进行改进,得到混沌时间序列模型,分别利用改进后的混沌时间序列模型、SVM 模型和时间序列混合预测模型等3 种方法进行建模,以天津滨海国际机场近两年的能源消耗情况为例进行仿真实验,并采用统计学方法检验模型的精度和误差。实验结果表明混合时间序列模型的建模精度和预测效果要明显优于单一预测模型。

关键词: 时间序列, 支持向量机, 混合预测模型, 机场能耗预测

Abstract: In order to solve the problems of single forecasting models such as low accuracy and easy falling into local optimization, a hybrid model is presented basing on time series analysis method and SVM (support vector machine), which could improve the predicting accuracy. An improved chaotic time series model is presented.
Chaotic time series model, SVM and hybrid model of time series are used for the modeling and simulation of energy consumption of Tianjin Binhai International Airport. Evaluation of the three models is based on the estimation of average behavior of mean squared error. Experimental results show that the hybrid model is an effective way to improve the forecasting accuracy achieved by any one of the models separately.

Key words: time series, SVM, hybrid prediction model, airport energy prediction

中图分类号: 

Baidu
map