taptap下载安装安卓学报

• 工程技术 • taptap点点手机网页    下一篇

基于网络社区划分的协同推荐算法

贺怀清,范志亮,刘浩翰   

  1. (taptap下载安装安卓计算机科学与技术学院,天津300300)
  • 收稿日期:2015-04-08 修回日期:2015-05-15 出版日期:2016-10-19 发布日期:2016-12-06
  • 作者简介:贺怀清(1969—),女,吉林白山人,教授,博士,研究方向为数据挖掘、图形图像与可视分析.
  • 基金资助:

    民航科技项目(MHRDZ201207);天津市应用基础与前沿技术研究计划重点项目(14JCZDJC32500);taptap下载安装安卓预研重大项目(3122013P003)

Collaborative filtering recommendation algorithm based on network community partition

HE Huaiqing, FAN Zhiliang, LIU Haohan   

  1. (College of Computer Science and Technology, CAUC, Tianjin 300300, China)
  • Received:2015-04-08 Revised:2015-05-15 Online:2016-10-19 Published:2016-12-06

摘要:

为提高协同推荐系统的准确性及可扩展性,提出基于网络社区划分的协同推荐算法。首先利用用户好友数据构建用户关系网,然后利用社区划分算法对用户进行社区划分,使得划分在同一社区的用户有共同话题和爱好,接着利用同一社区的用户寻找目标用户近邻集,最后根据近邻用户对未知项目的评分预测目标用户的评分。通过实验证明:在近邻数小于27 时,该推荐算法优于基于用户模糊聚类的协同过滤算法。

关键词: 协同过滤, 平均绝对误差, 均方根误差, 用户关系网, 社区划分

Abstract:

In order to raise the accuracy and extensibility of collaborative filtering recommendation,a collaborative filtering recommendation based on network community is proposed. First, a network of users could be built by the metadata about friends. Then the network of users could be divided by community partition algorithm to make sure that the same community of users have similar interests. The nearest neighbour set of target users are found by users of the same community. Finally, scores of target users are forecasted according to neighbour users'scoring to unknown projects. Results show that when the number of neighbours is less than 27, the accuracy got by the proposed algorithm is better than the algorithm based on user fuzzy clustering.

Key words: collaborative filtering, MAE, RMSE, user network, community division

中图分类号: 

Baidu
map