taptap下载安装安卓学报

• 民用航空 •    下一篇

基于KF联合EKF参数辨识的短时4D航迹预测

章涛1,高阳1,张成伟2,吴仁彪1   

  1. (1.taptap下载安装安卓天津市智能信号和图像处理重点实验室,天津300300;2.民航深圳空中交通管理站,深圳518128)
  • 收稿日期:2015-11-10 修回日期:2016-01-07 出版日期:2016-10-19 发布日期:2016-12-06
  • 作者简介:章涛(1989—),男,河北衡水人,硕士研究生,研究方向为4D航迹预测.
  • 基金资助:

    国家自然科学基金项目(F011206)

Short-term 4D trajectory prediction based on KF joint EKF parameter identification

ZHANG Tao1, GAO Yang1, ZHANG Chengwei2, WU Renbiao1   

  1. (1. Intelligent Signal and Image Processing Key Lab of Tianjin, CAUC, Tianjin 300300, China;2. Shenzhen Air Traffic Management Station, Shenzhen 512128, China)
  • Received:2015-11-10 Revised:2016-01-07 Online:2016-10-19 Published:2016-12-06

摘要:

提出了一种KF(Kalman filter)和EKF(efxtended Kalman filter)联合算法辨识运动模型参数的4D航迹预测
方法。该方法在等角航迹飞行模型的基础上,运用KF 和EKF 联合算法辨识航空器的地速,以此计算航空器未来特征位置的过点时间。仿真实验结果表明,该方采用航空器的经纬度作为观测变量分别更新的方法,可降低运算复杂度,并能够较精确地预测航空器等速巡航阶段的短期飞行航迹。

关键词: 卡尔曼滤波, 扩展卡尔曼滤波, 参数辨识, 等角航迹, 4D 航迹预测

Abstract:

A method based on KF-EKF jointed algorithm is proposed to identify motion model parameters for 4D trajectory prediction. On the basis of isometric track flight model, KF-EKF jointed algorithm is employed to identify the ground speed of aircraft, then the arriving time of aircraft爷s scheduled position is calculated. Latitude and longitude of aircraft are taken as observed variables and are updated respectively. Simulation result shows that it could reduce complexity of the computation and accurately predict the short-term flight track of constant speed cruise phase.

Key words: Kalman filter, extended Kalman filter, parameter identification, isometric track, 4D trajectory prediction

中图分类号: 

Baidu
map