当前位置: 首页 >> 正文

韩建华简介

发布者: [发表时间]:2025-09-11 [来源]: [浏览次数]:

一、个人基本信息

出生年月:1990年4月

籍贯:山西运城

性别:男

民族:汉

专业技术职称:副教授

最高学历:博士研究生

工作单位:taptap下载安装安卓理学院物理系

通讯地址:天津市东丽区津北公路2898号taptap下载安装安卓北院北教15-304

邮政编码:300300

电子邮箱:jhhan@cauc.edu.cn;hanjh15@tsinghua.org.cn

Researchgate主页:https://www.researchgate.net/profile/Jianhua-Han-5

ORCID:0000-0003-3811-9413

二、学习和工作经历

2019/12– 至今,taptap下载安装安卓,理学院,副教授;

2019/07–2019/11,taptap下载安装安卓,理学院,讲师;

2015/09–2019/07,清华大学,材料科学与工程,博士;

2012/09–2015/06,天津城建大学,材料科学与工程,硕士;

2008/09–2012/06,天津城建大学,材料科学与工程,学士;

三、课程教学

材料科学基础(本科生课程);先进能源材料(研究生课程)

四、学术兼职

Frontiers in Chemistry、Inorganics等期刊特邀编辑。

五、荣誉称号与获奖

[1]天津市科学技术进步二等奖;

[2]天津市物理学会青年科技奖;

[3]蓝天青年学者;

[4]taptap下载安装安卓优秀教师;

[5]taptap下载安装安卓青年五四奖章。

人才培养

[1]指导学生获“全国大学生材料分析大赛”一等奖,2025;

[2]指导学生获“中国国际大学生创新大赛”天津市银奖,2025;

[3]指导学生获“中国国际大学生创新大赛”天津市银奖,2024;

[4]指导学生获“第九届中国国际互联网+大学生创新创业大赛”天津市银奖。

主要研究方向和科研项目

1)主要研究方向

光电功能材料/表面化学/润湿性调控

2)主要科研项目

[1]国家自然科学基金,52402211,主持,2025-2027.

[2]天津市自然科学基金,24JCYBJC00040,主持,2025-2027.

[3]国家自然科学基金配套项目,3122025PT11,主持,2025-2026.

[4]国家自然科学基金,52572238,合作单位负责,2026-2029.

[5]中央高校基本科研业务费重点项目,3122024059,主持,2024-2025.

[6]天津市自然科学基金,21JCQNJC00950,主持,2021-2023.

[7]国家自然科学基金,52072207,合作单位负责,2021-2024.

[8]蓝天青年学者人才项目,主持,2021-2024.

[9]天津市教委科研项目,2020KJ032,主持,2021-2022.

[10]中央高校基本科研业务费项目,主持,2020-2021.

[11]清华大学新型陶瓷与精细工艺国家重点实验室开放基金,主持,2020-2021.

八、代表性学术论文

[1] Z. Wang, L. Ye, Y. Zhang, L. Zhang, Y. Han, J. Yang, X. Han,J. Han*, D. Oron, H. Lin*, Hyperdispersed CoOxnanofluids enables CsPbBr3gradient hybrid photo-response layer for superb perovskite laser cells,Nano Energy, 2025, 141: 111146.

[2] L. Ye, Z. Wang, Y. Zhang, L. Zhang, Z. Zhang, Y. Han, X. Han,J. Han*, H. Lin*, Micro-Flame-Induced Grain Boundary Reconstruction for Highly Stable and Efficient Carbon-Based CsPbBr3Perovskite Laser Cells,Solar RRL, 2025, 9: 2500276.

[3] Y. Li, Y. Xu, Z. Wang, Y. Chen, K. Ai, P. Guo, Y. Zhang, M. Yao,J. Han*, Pre-implanted bimolecular co-anchoring: An innovative approach towards engineering robust superhydrophobic composite coatings on Al alloy,Applied Surface Science, 2025, 706: 163611.

[4]Y. Chen, Z. Wang, Y. Li, Y. Zhou, K. Ai, Y. Chen,J. Han*, Mechanically durable resin-based superhydrophobic coating on Al alloy with interface optimization via implanted molecular anchoring,Applied Surface Science, 2025, 680: 161382.

[5] Y. Xu, Y. Li, Z. Wang, K. Ai, Y. Chen, Y. Zhang, Y. Su,J. Han*, Interfacial bonding engineering in Cr-silane hybrid coatings: durable superhydrophobic Al alloy surfaces with dual-functional anti-icing and corrosion resistance,Surfaces and Interfaces, 2025, 72: 107395.

[6] K. Ai, Y. Li, Y. Xu, Y. Chen, Z. Wang, Y. Zhang,J. Han*, Reactive Element-Effect Optimized Ni-Cr-W-Al Alloy for Fabricating Robust and Fluorine-Free Superhydrophobic Coating on Al Alloy,Advanced Engineering Materials, 2025,27:2402798.

[7]Z. Wang, L. Zhang, X. Liu, L. Ye, S. Zhao, Y. Chen, H. Yan,J. Han*, H. Lin*, Superwetting nanofluids of NiOx-nanocrystals/CsBr solution for fabricating quality NiOx-CsPbBr3gradient hybrid film in carbon-based perovskite solar cells,Small Methods, 2024, 8: 2400283.

[8]X. Liu, H. Zhong, X. Wang, J. Yang, Z. Zhang,J. Han*,D. Oron*, H. Lin*, Interface engineering in CdS modified PbS nanosheet-FAPbI3heterostructure enabling high-performance perovskite solar cell,ACS Applied Materials & Interfaces, 2024, 16: 23434-23442.

[9]S. Zhao, Z. Wang, L. Ye, H. Yan,J. Han*, H. Lin*, Bi2S3nanocrystals-CsPbBr3hybrid absorber enables durable and efficient carbon-based perovskite solar cells,ACS Applied Energy Materials, 2024, 7: 10155-10162.

[10]J. Han*, Y. Li, Y. Zhou, Y. Chen, Z. Wang, Y. Li, B. Wang, Fluorine-free, corrosion-resistant aluminum surfaces with nickel hydroxide and stearic acid superhydrophobic coatings,Journal of Materials Science, 2024, 59: 12065-12073.

[11] J. Pan, Y. Zhou, Y. Li, B. Wang, Y. Li, Y. Chen, L. Zhang, Q. Han*,J. Han*, Mechanically durable and fluorine-free Ni-Cr alloys based highly hard superhydrophobic coating on Al alloy,Advanced Engineering Materials, 2024, 26: 2302105.

[12]X. Liu, Z. Wu, H. Zhong, X. Wang, J. Yang, Z. Zhang,J. Han*, D. Oron*, H. Lin*, Epitaxial 2D PbS nanosheet-formamidinium lead triiodide heterostructure enabling high-performance perovskite solar cells,Advanced Functional Materials, 2023, 33: 2304140.

[13]J. Han*, S. Zhao, X. Liu, Z. Wang, H. Yan, H. Lin*, Robust and efficient carbon-based planar perovskite solar cells with CsPbBr3-MoS2hybrid absorber,ACS Applied Materials & Interfaces, 2023, 15: 55895-55902.

[14]J. Han*, Z. Wang, A. Zhi, Y. Li, S. Zhao, H. Yan, Q. Han*, A smart electroplating approach to fabricate mechanically robust and fluorine-free Ni-W alloys based superhydrophobic coating on Al alloy,Vacuum, 2023, 217: 112501.

[15] Y. Li, Y. Zhou, J. Pan, E. Liu, J. Hao,J. Han*, Facile fabrication of high-white and robust superhydrophobic Ni/Al2O3composite coating on Al alloy,Advanced Engineering Materials, 2023, 25: 2300920.

[16]J. Han*, S. Zhao, Z. Wang, H. Yan, H. Lin*, Y. Su*, Facile synthesis of large bulk crystal based on perovskite-quantum dots hybrid structure,Crystal Research and Technology, 2023, 58: 2300213.

[17] Y. Zhou, E. Liu, J. Kang, S. Zhao, L. Wang, H. Yan, C. Hu,J. Han*, A universal synthetic methodology of superhydrophobic protective film on various substrates with convenient and stable precursor,Vacuum, 2023, 210: 111847.

[18]J. Han*, E. Liu, Y. Zhou, S. Zhao, H. Yan, C. Hu, J. Kang, Q. Han, Y. Su, Robust superhydrophobic film on aluminum alloy prepared with TiO2/SiO2-silane composite film for efficient self-cleaning, anti-corrosion and anti-icing,Materials Today Communications, 2023, 34: 105085.

[19] E. Liu, Y. Zhou, S. Zhao, J. Hao, Y. Hu, Y. Su,J. Han*, Fabricating superhydrophobic protective films with enhanced self-cleaning and anti-corrosion properties through multiple anodic oxidations on aluminum alloys,ChemistrySelect, 2023, 8: e202203935.

[20] S. Wu, D. Zhang, H. Gong, Z. Wang, Y. Huang, L. Guo, C. Hu, H. Yan, J. Kang,J. Han*, Z. Liu*, Controlling superhydrophobicity of aluminum with hierarchical micro-nanostructure film for superb self-cleaning and anti-corrosion,ChemistrySelect, 2022, 7: e202200525.

[21]J. Han, H. Yan, C. Hu, Q. Song, J. Kang, Y. Guo, Z. Liu, Simultaneous modulation of interface reinforcement, crystallization, anti-reflection and carrier transport in Sb gradient-doped SnO2/Sb2S3heterostructure for efficient photoelectrochemical cell,Small, 2022, 18: 2105026.

[22]J. Han, H. Xing, Q. Song, H. Yan, J. Kang, Y. Guo, Z. Liu. A ZnO@CuO core-shell heterojunction photoanode modified with ZnFe-LDH for efficient and stable photoelectrochemical performance,Dalton Transactions, 2021, 50(13): 4593-4603.

[23]J. Han, S. Zhang, Q. Song, H. Yan, J. Kang, Y. Guo, Z. Liu, The synergistic effect with S-vacancies and built-in electric field on a TiO2/MoS2photoanode for enhanced photoelectrochemical performance,Sustainable Energy & Fuels, 2021, 5: 509-517.

[24]J. Han, Z. Liu, Optimization and modulation strategies of zinc oxide-based photoanodes for highly efficient photoelectrochemical water splitting,ACS Applied Energy Materials,2021, 4: 1004-1013.

[25]J. Han, Y. Lan, Q. Song, H. Yan, J. Kang, Y. Guo, Z. Liu, Zinc ferrite-based p–n homojunction with multi-effect for efficient photoelectrochemical water splitting,Chemical Communications, 2020, 56: 13205-13208.

[26]J. Han, X. Yin, H. Nan, Y. Zhou, M. Tai, Y. Gu, J. Li, D. Oron, H. Lin, An excellent modifier: carbon quantum dots for highly efficient carbon-electrode-based methylammonium lead iodide solar cells,Solar RRL, 2019, 3: 1900146.

[27]J. Han, X. Yin, Y. Zhou, H. Nan, Y. Gu, M. Tai, J. Li, H. Lin, High efficient large-area perovskite solar cells based on paintable carbon electrode with NiO nanocrystal-carbon intermediate layer,Chemistry Letters, 2019, 48: 734-737.

[28]J. Han, S. Luo, X. Yin, Y. Zhou, H. Nan, J. Li, X. Li, D. Oron, H. Shen, H. Lin, Hybrid PbS quantum-dot-in-perovskite for high-efficiency perovskite solar cell,Small, 2018, 14: 1801016.

[29]J. Han, X. Yin, Y. Zhou, H. Nan, Y. Gu, M. Tai, J. Li, H. Lin, Perovskite/poly[bis(4-phenyl)(2,4,6-trimethylphenyl) amine] bulk heterojunction for high-efficient carbon-based large-area solar cells by gradient engineering,ACS Applied Materials & Interfaces, 2018, 10: 42328-42334.

[30]J. Han, X. Yin, H. Nan, Y. Zhou, Z. Yao, J. Li, D. Oron, H. Lin, Enhancing the performance of perovskite solar cells by hybridizing SnS quantum dots with CH3NH3PbI3,Small, 2017, 13: 1700953.

[31]J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4sensitized ZnO nanotube arrays,Applied Catalysis B: Environmental, 2015, 163: 179-188.

[32]J. Han, Z. Liu, K. Guo, X. Zhang, T. Hong, B. Wang, AgSbS2modified ZnO nanotube arrays for photoelectrochemical water splitting,Applied Catalysis B: Environmental, 2015, 179: 61-68.

[33]J. Han, Z. Liu, K. Guo, J. Ya, Y. Zhao, X. Zhang, T. Hong, J. Liu, High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells,ACS Applied Materials & Interfaces, 2014, 6: 17119-17125.

[34]J. Han, Z. Liu, B. Yadian, Y. Huang, K. Guo, Z. Liu, B. Wang, Y. Li, T. Cui, Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties,Journal of Power Sources, 2014, 268: 388-396.

[35]J. Han, Z. Liu, X. Zheng, K. Guo, X. Zhang, T. Hong, B. Wang, J. Liu, Trilaminar ZnO/ZnS/Sb2S3nanotube arrays for efficient inorganic-organic hybrid solar cells,RSC Advances, 2014, 4: 23807-23814.


Baidu
map