当前位置: 首页 >> 师资队伍 >> 数学系 >> 正文

赵静简介

发布者: [发表时间]:2020-04-23 [来源]:taptap下载安装安卓理学院 [浏览次数]:

 个人基本信息

出生日期:19793

籍贯:黑龙江省五常

性别:

民族:

专业技术职务:教授

最高学历:硕士研究生

工作单位:taptap下载安装安卓理学院

通信地址:天津市,taptap下载安装安卓南院理学院

邮政编码:300300

  话:022-24092515 ()
电子邮箱:zhaojing200103@163.comj-zhao@cauc.edu.cn

 

学习和工作经历简介

2019/01 – 至今,taptap下载安装安卓,理学院,教授;

2011/11 – 2018/12 taptap下载安装安卓,理学院,副教授;

2006/10 – 2011/10 taptap下载安装安卓,理学院,讲师;

2004/07 – 2006/09 taptap下载安装安卓,理学院,助教;

2001/09 – 2004/06 哈尔滨师范大学,数学系,硕士;

1997/09 – 2001/07 哈尔滨师范大学,数学系,学士;

 

课程教学(本科、研究生课程)

本科生课程:高等数学,线性代数,泛函分析(中欧)。

 

荣誉称号与获奖

taptap下载安装安卓2020年优秀教学奖


taptap下载安装安卓首批青年骨干教师;考核为优秀青年骨干教师;


taptap下载安装安卓十佳教师;

taptap下载安装安卓优秀共产党员;

taptap下载安装安卓首届微课大赛二等奖;

2012年,算子不动点迭代算法在均衡问题中的应用获得taptap下载安装安卓科技成果奖二等奖。

 

主要研究方向和科研业绩

1)主要研究方向:

非线性分析

算子不动点理论、最优化理论及其算法

 

2)主要科研项目:

[1] 非凸函数水平集上分裂可行问题的算法及其应用研究,天津市教委科研计划项目(自然科学),2018/102020/09,主持。

[2] 复杂波网络的控制设计与镇定,国家自然科学基金青年科学基金项目,天津市教委科研项目,2016/01-2018/12,参与。

[3] 可分离非凸优化问题的邻近点算法研究,中央高校基本科研业务费taptap下载安装安卓理学专项,2015/11-2017/10,主持。

[4] 图像重建中分裂可行问题算法研究,中央高校基本科研业务费taptap下载安装安卓理学专项,2013/052015/10,主持。

[5] 几类非线性算子不动点迭代算法及其应用,中央高校基本科研业务费taptap下载安装安卓专项,,2009/122012/04,主持。

 

 论著目录(代表性学术论文

[1] Jing Zhao*, Dingfang Hou, A self-adaptive iterative algorithm for the split common fixed point problems, Numerical Algorithms, 2019, 82(3): 1047-1063.

[2] Jing Zhao*, Dingfang Hou, Haili Zong, Several iterative algorithms for solving the multiple-set split common fixed-point problem of averaged operators, Journal of Nonlinear Functional Analysis, 2019, Article ID 39:1-15.

[3] Jing Zhao*, Jia Yunnuan, Zhang Hang, General alternative regularization methods for split equality common fixed-point problem, Optimization, 2018, 67(5): 619-635.

[4] Jing Zhao*, Hou Dingfang, Haili Zong, Parallel iterative algorithm for solving the multiple-set split common fixed-point problem, Journal of Nonlinear  and  Convex Analysis, 2018, 19(11): 2007-2019.

[5] Jing Zhao*, Haili Zong, Iterative algorithms for solving the split feasibility problem in Hilbert spaces, Journal of Fixed Point Theory and Applications, 2018, 20: 11.

[6] Jing Zhao*, Haili Zong, Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators, Journal of Inequalities and Applications, 2018, 2018:83.

[7] Jing Zhao*, Songnian He, Solving the general split common fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operator norms, Filomat, 2017, 31(3):559-573.

[8] Jing Zhao*, Haili Zong, Guangxuan Liu, Hang Zhang, Solving variational inequality and split equality common fixed-point problem without prior knowledge of operator norms, Journal of Nonlinear Science and Applications, 2016, 9(9): 5428-5440.

[9] Jing Zhao*; Wang Shengnan; Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators, Acta Mathematica Scientia, 2016, 36(5): 1474-1486.

[10] Jing Zhao*, Shengnan Wang, Mixed iterative algorithms for the multiple-set split equality common fixed-point problems without prior knowledge of operator norms, Optimization , 2016, 65(5):1069-1083.

[11] Jing Zhao*, Songnian HeViscosity Approximation Methods for Split Common Fixed-Point  Problem of  Directed OperatorsNumerical Functional Analysis and Optimization, 2015, 36(4): 528-547.

[12] Jing Zhao*, Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization, 2015, 64(12): 2619-2630.

[13] Jing Zhao*, Hang Zhang, Solving Split Common Fixed-Point Problem of Firmly Quasi-Nonexpansive Mappings without Prior Knowledge of Operators Norms, Abstract and Applied Analysis, 2014, Article ID 389689, 9 pages.

[14] Jing Zhao*, Songnian He, Simultaneous iterative algorithms for the split common fixed-point problem of generalized asymptotically quasi-nonexpansive mappings without prior knowledge of operator norms, Fixed Point Theory and Applications, 2014, 2014: 73.

[15] Jing Zhao*, Alternating mann iterative algorithms for the split common fixed-point problem of quasi-nonexpansive mappings, Fixed Point Theory and Applications, 2013, 2013: 288.

[16] Jing Zhao*,Caiping Yang, Guangxuan Liu, A new iterative method for equilibrium problems, fixed point problems of infinitely nonexpansive mappings and a general system of variational inequalities, WSEAS Transactions on Mathematics, 2012, 11(1): 34-43.

[17] Jing Zhao*Strong Convergence of a Hybrid Iteration Scheme for Equilibrium Problems, Variational Inequality Problems and Common Fixed Point Problems, of  Quasi-φ-Asymptotically Nonexpansive Mappings in Banach Spaces, Journal of Applied Mathematics,  2012, Article ID 516897, 19 pages.

[18] Jing Zhao*Songnian HeA hybrid iteration scheme for equilibrium problems and common fixed point problems of generalized quasi-ϕ-asymptotically nonexpansive mappings in Banach spacesFixed Point Theory and Applications, 2012, 2012: 33.

[19] Jing Zhao*, Songnian He, Strong Convergence of the Viscosity Approximation Process for the Split Common Fixed-Point Problem of Quasi-Nonexpansive Mappings, Journal of Applied Mathematics2012, Article ID 438023, 12 pages.

[20] Jing Zhao*, Shu-tao Chen, Weakly locally uniform rotundity for Orlicz-Sobolev spaces,数学杂志,  2010, 30(5): 820-826.

[21] Jing Zhao*, Songnian He, Weak and Strong Convergence Theorems for Asymptotically Strict Pseudocontractive Mappings in the Intermediate Sense, Fixed Point Theory and Applications, 2010, Article ID 281070, 13 pages.

[22] Jing Zhao* Songnian He Guangxuan LiuStrong convergence theorems for generalized asymptotically quasi-nonexpansive mappings, Journal of Applied Mathematics and Computing, 2009, 30: 53–64.

[23] Jing Zhao*, Songnian HeA new iterative method for equilibrium problems and fixed point problems of infinitely nonexpansive mappings and monotone mappingsApplied Mathematics and Computation,  2009, 215(2): 670-680.

[24] Jing Zhao*, Songnian He, Yongfu Su, Weak and Strong Convergence Theorems for Nonexpansive Mappings in Banach Spaces, Fixed Point Theory and Applications, 2008, Article ID751383, 7 pages.

[25] Jing Zhao, Songnian He, Simultaneous iterative algorithms for the split common fixed-point problem governed by quasi-nonexpansive mappingsJournal of Nonlinear and Convex Analysis,202021(6)1275-1286.


[26] Jing Zhao, Cuijie Zhang,Improved relaxed CQ method with inertial accelerated technique for the split feasibility problem,Journal of Nonlinear and Convex Analysis, 2020, 21(10)2391-2402.


[27] Jing Zhao, Yuan Li, Haili Zong, Improved self-adaptive iterative algorithms for the split equality common fixed-point problem of firmly quasi-nonexpansive operators, Journal of Nonlinear Functional Analysis2020, Vol. 2020, Article ID 41, 1-16.


[28] Jing Zhao, Dingfang Hou, Xinglong Wang, A new self-adaptive method for the split equality common fixed-point problem of quasi-nonexpansive mappings,Optimization, 2020, Doi:10.1080/02331934.2020.1830400.

 

[29] Jing Zhao, Yuan Li,A new inertial self-adaptive algorithm for split common fixed-point problems, J. Nonlinear Var. Anal.,2021,5(1):43-57.

 

[30]Jing Zhao, Ning-ning Zhao, Dingfang Hou,Inertial accelerated algorithms for the split common fixed-point problem of directed operators, Optimization, 2021,

https://doi-org-s.webvpn.cauc.edu.cn/10.1080/02331934.2021.1888087.

 




Baidu
map