taptap下载安装安卓学报 ›› 2025, Vol. 43 ›› Issue (2): 73-82.

• 未来机场及智能装备 • 上一篇    下一篇

基于 CA-SIFT 的图像特征两级匹配算法

  

  1. taptap下载安装安卓天津市智能信号与图像处理重点实验室,天津 300300
  • 收稿日期:2023-03-29 修回日期:2023-05-22 出版日期:2025-05-14 发布日期:2025-05-14
  • 作者简介:焦卫东(1973— ),男,陕西咸阳人,教授,博士,研究方向为 Clifford 代数、图像处理.
  • 基金资助:
    国家重点基础研究发展计划项目(2020YFB1600101)

Two-level matching algorithm for image features based on CA-SIFT

  1. Tianjin Key Laboratory for Advanced Signal Processing, CAUC, Tianjin 300300, China 
  • Received:2023-03-29 Revised:2023-05-22 Online:2025-05-14 Published:2025-05-14

摘要:

针对欧氏空间尺度不变特征变换(SIFT,scale invariant feature transform)算法在彩色图像匹配过程中丢失
图像光谱信息、匹配精度低、计算量大等问题,利用 Clifford 代数(CA,Clifford algebra)对多维空间的表达能
力提出一种基于 CA-SIFT 的图像匹配算法。 首先,将图像转换到 CA 空间表示,同时保留图像空间和光谱信
息,通过共形几何代数内积运算构造度量函数,提高特征点搜索效率,在 CA 空间中检测特征点;其次,采用图
像特征两级匹配策略,即将 CA-SIFT 特征描述向量转换为哈希编码,由暴力匹配得到粗匹配结果;最后,采
用网格运动统计(GMS,grid-based motion statistics)方法完成精匹配。 实验结果表明:本文算法性能优于
SIFT 算法,提取的特征点对数量最多提升近 54%;图像匹配方面,平均匹配精度达到 98%以上,实现了高
精度、适用于多数场景的图像匹配方法。

关键词:

Abstract:

To address the problems of loss of image spectral information, low matching accuracy and large computational effort in the process of color image matching by the scale invariant feature transform (SIFT) algorithm in Euclidean
space, an image matching algorithm based on CA-SIFT is proposed using the expressiveness of Clifford algebra
(CA) for multidimensional space. Firstly, the image is transformed to CA space representation, while retaining the
image space and spectral information, and the metric function is constructed by the inner product operation of the
conformal geometric algebra to improve the efficiency of feature point search and detect feature points in CA space.
Secondly, a two-stage image feature matching strategy is adopted, the CA-SIFT feature description vector is converted into a hash code, and the coarse matching results are obtained by brute force matching. Finally, a gridbased motion statistics (GMS) method is used to complete the fine matching. The experimental results show that the
proposed algorithm outperforms the SIFT algorithm, and the number of extracted feature point pairs is improved
nearly 54%. In terms of image matching, the average matching accuracy reaches over 98%, achieving a highly accurate and applicable image matching method for most scenes.

Key words:

中图分类号: 

Baidu
map