taptap下载安装安卓学报 ›› taptap点点手机网页 , taptap点点手机网页 ›› Issue (2): 38-44.

• 未来机场及智能装备 • 上一篇    下一篇

基于 BP 神经网络的飞行员对跑道平整度的评价预测

  

  1. 1.taptap下载安装安卓交通科学与工程学院,天津 300300; 2.首都机场集团有限公司北京大兴国际机场,北京 102604
  • 收稿日期:2022-11-25 修回日期:2023-03-08 出版日期:2025-05-14 发布日期:2025-05-14
  • 作者简介:齐麟(1982— ),男,山西太原人,教授,博士,研究方向为结构工程、机场工程等.

Evaluation and prediction of runway roughness by pilots based on
BP neural network

  1. 1. College of Transportation Science and Engineering, CAUC, Tianjin 300300, China;
    2. Beijing Daxing International Airport, Capital Airports Holdings Co., Ltd., Beijing 102604, China 
  • Received:2022-11-25 Revised:2023-03-08 Online:2025-05-14 Published:2025-05-14

摘要:

基于美国联邦航空管理局(FAA,Federal Aviation Administration)在 B737-800 和 A330-200 飞行模拟器中
进行的飞行员对 37 条实测跑道平整度主观评价的调查数据,对中国跑道平整度评价指标与飞行员对跑道
平整度评价间的关系进行分析,并对比分析不同机型对飞行员评价跑道平整度的影响。构建反向传播(BP,
back propagation)神经网络,以中国现行的跑道平整度评价指标和飞机总重(AGW,aircraft gross weight)作
为输入,以飞行员对跑道平整度能否接受作为输出,预测飞行员对跑道平整度的评价。 结果表明,各跑道平
整度评价指标与飞行员对跑道平整度的评价间拟合优度偏低,无法单独对飞行员的评价结果进行预测;机
型会影响飞行员对跑道平整度的评价,在飞行员对跑道平整度进行评价预测时需要考虑机型特征;BP 神经
网络在训练集的预测准确率为 100%,在测试集的预测准确率为 95.5%,能够有效地综合中国跑道平整度
评价指标的特征,并实现跨机型准确预测飞行员对跑道平整度评价的结果。

关键词:

Abstract:

Based on the survey data of subjective evaluation of runway roughness by pilots on 37 actual test runways, conducted by the Federal Aviation Administration (FAA) in B737-800 and A330-200 flightsimulators, the relationship between the evaluation indicators of runway roughness and pilots′ evaluations of runway roughness in China was analyzed, and the impact of different aircraft models on pilots′ evaluations of runway roughness were compared and analyzed. Back propagation (BP) neural network was built, the current runway roughness evaluation indicators in China and aircraft gross weight (AGW) were taken as the input, and the pilots′ acceptance of runway roughness were
taken as the output to predict the pilots′ evaluation of runway roughness. The results showed that the goodness of fit
between each runway roughness evaluation indicator and the pilot′s evaluation of runway roughness is low, making
it impossible to predict the pilots′ evaluation results separately. The aircraft type can affect the pilots′ evaluation of
runway roughness, and the characteristics of the aircraft type should be considered when the pilot evaluates and
predicts runway roughness. The BP neural network has a prediction accuracy of 100% in the training set and 95.5%
in the test set. It can effectively integrate the characteristics of China′s runway roughness evaluation indicators and
achieve accurate prediction of pilots′ runway roughness evaluation results across aircraft types.

Key words:

中图分类号: 

Baidu
map