taptap下载安装安卓学报 ›› 2024, Vol. 42 ›› Issue (4): 64-70.

• 空域融合安全运行 • 上一篇    下一篇

基于郊狼优化算法的扇区管制复杂性聚类与仿真验证

李振猛   

  1. (中国民用航空西北地区空中交通管理局区域管制中心,西安 710003)
  • 收稿日期:2024-04-16 修回日期:2024-06-12 出版日期:2024-12-19 发布日期:2024-12-21
  • 作者简介:李振猛(1988—),男,河北秦皇岛人,工程师,学士,研究方向为空中交通管理.
  • 基金资助:
    国家自然科学基金民航联合研究基金重点项目(U2133207)

Cluster analysis and simulation verification of sector control complexity based on coyote optimization algorithm#br#

LI Zhenmeng   

  1. (Area Control Center, Northwest Air Traffic Management Bureau, CAAC, Xi’an 710003, China)
  • Received:2024-04-16 Revised:2024-06-12 Online:2024-12-19 Published:2024-12-21

摘要: 为提高科学评估扇区管制复杂性的能力,本文提出基于郊狼优化算法(COA,coyote optimization algorithm)的
扇区管制复杂性聚类算法。 首先,引入逐维变异改进策略来改进郊狼优化聚类算法,解决其易陷入局部最优
解的问题。 其次,以中国西北地区区域管制扇区为研究对象,采用改进郊狼优化聚类算法(ICOCA,improved
coyote optimization clustering algorithm)对扇区管制复杂性指标进行聚类分析。 最后,对扇区聚类结果进行仿
真验证,结果证明了所提算法在扇区管制复杂性分类方面的有效性和可靠性,可为后续的空域管理提供有
效的数据决策

关键词: 空中交通管理, 管制复杂性, 聚类分析, 改进郊狼优化聚类算法(ICOCA)

Abstract: To improve the ability of scientifically assessing the sector control complexity, a clustering algorithm of sector con鄄
trol complexity based on the coyote optimization algorithm (COA) is proposed in this paper. Firstly, a per-dimen鄄
sion mutation improvement strategy is introduced to propose the improved coyote optimization clustering algorithm
(ICOCA), which can solve the problem of being easily trapped in local optimal solutions. Secondly, taking the re鄄
gional control sectors in the Northwest China as the research object, the ICOCA is applied to conduct cluster analy鄄
sis for the index of sector control complexity. Finally, the results of sector clustering are simulated and verified,
which can prove the effectiveness and reliability of the proposed algorithm in the classification of sector control
complexity, thus it can provide effective data decisions for subsequent airspace management.

Key words: air traffic management, control complexity, cluster analysis, improved coyote optimization clustering algo-
rithm (ICOCA)

中图分类号: 

Baidu
map