taptap点点手机网页 ›› 2024, Vol. 42 ›› Issue (4): 50-55.

• 空域融合安全运行 • 上一篇    下一篇

基于 GWO-HMM 的空中交通网络流系统态势预测研究

张兆宁,杨 刚   

  1. (taptap下载安装安卓空中交通管理学院,天津 300300)
  • 收稿日期:2023-04-07 修回日期:2023-05-19 出版日期:2024-12-19 发布日期:2024-12-21
  • 作者简介:张兆宁(1964—),男,河北唐山人,教授,博士,研究方向为空中交通运输规划与管理.
  • 基金资助:
    国家重点研发计划项目(2020YFB1600103)

Research on prediction of air traffic network flow system situation based on GWO-HMM

ZHANG Zhaoning, YANG Gang   

  1. (College of Air Traffic Management, CAUC, Tianjin 300300, China)
  • Received:2023-04-07 Revised:2023-05-19 Online:2024-12-19 Published:2024-12-21

摘要: 针对空中交通流量管理部门如何更高效地实施流量管理的问题,本文将态势感知理论应用于空中交通网
络流系统(ATNFS,air traffic network flow system),建立空中交通网络流系统的运行态势预测模型。 首先,
给出了空中交通网络流系统的态势感知过程,从节点和航线的角度筛选出航线饱和度、不正常航班率、节
点饱和度、节点延误架次比、节点航班取消率 5 个态势要素,使用态势值作为态势理解的指标;其次,分析
隐马尔可夫模型(HMM,hidden Markov model)的优势与不足,建立了基于灰狼优化(GWO,grey wolf opti鄄
mization)算法和改进隐马尔可夫模型的态势预测模型;最后,使用某空中交通网络流系统的实际运行数
据进行算例验证。 结果表明,改进后的预测模型相较于原本的隐马尔可夫预测模型精度更高,预测结果更
准确。

关键词: 空中交通流量管理, 空中交通网络流系统, 隐马尔可夫模型(HMM), 灰狼优化(GWO)算法, 态势感知, 态势
预测

Abstract: To address the problem of how air traffic flow management departments can implement flow management more ef鄄
ficiently, the situational awareness theory was applied to the air traffic network flow system (ATNFS) in this paper,
and the operational situation prediction model of the air traffic network flow system was established. Firstly, the
situational awareness process of air traffic network flow system was provided, and five situation elements including
route saturation, irregular flight rate, node saturation, node delayed sortie ratio and node flight cancellation rate,
were selected from the perspective of nodes and routes, and the situation values were used as indicators of situation
understanding. Secondly, the advantages and disadvantages of hidden Markov model (HMM) were analyzed, and a
situation prediction model based on grey wolf optimization (GWO) algorithm and improved HMM was established.
Finally, the actual operation data of an air traffic network flow system were used to verify the algorithm. The results
showed that the improved prediction model had higher accuracy and more accurate prediction results compared
with the original HMM.

Key words: air traffic flow management, air traffic network flow system (ATNFS), hidden Markov model (HMM), grey wolf
optimization (GWO) algorithm,
situation awareness, situation prediction

中图分类号: 

Baidu
map