| [1] |
HALLAM T G, CLARK C E, LASSITER R R. Effects of toxicants on populations: a qualitative approach I. Equilibrium environmental exposure[J]. Ecological Modelling, 1983, 18(3/4): 291-304.
|
| [2] |
AGARWAL M, DEVI S. The effect of environmental tax on the survival of biological species in a polluted environment: a mathematical model[J]. Nonlinear Analysis Modelling & Control, 2010, 3(3): 15-24.
|
| [3] |
WEN XIANZHANG, WANG ZHICHENG. Persistence and extinction in two species models with impulse[J]. Acta Mathematica Sinica(English Series), 2006, 2: 447-454.
|
| [4] |
LIU MENG, ZHANG LEI. Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input[J]. Applied Mathematics and Computation, 2009, 214(1): 155-162.
|
| [5] |
BAHAR A, MAO X. Stochastic delay Lotka-Volterra model[J]. Journal of Mathematical Analysis & Applications, 2004, 292(2): 364-380.
|
| [6] |
LIU MENG, WANG KE. Persistence, extinction and global asymptotical stability of a non-autonom ous predator-prey model with random perturbation[J]. Applied Mathematical Modelling, 2012, 36: 5344-5353.
|
| [7] |
LIU MENG, WANG KE. Stochastic Lotka-Volterra systems with L佴vy noise[J]. Journal of Mathematical Analysis & Applications,2014, 410(2):750- 763.
|
| [8] |
LIU QUN, CHEN QINGMEI, LIU ZHENHAI. Analysis on stochastic delay Lotka-Volterra systems driven by L佴vy noise[J]. Applied Mathematics & Computation, 2014, 235: 261-271.
|
| [9] |
BAI LING, LI JINGSHI, ZHANG KAI, et al. Analysis of a stochastic ratio-dependent predator-prey model driven by L佴vy noise[J]. Applied Mathematics & Computation, 2014, 233(1): 480-493.
|
| [10] |
董冉冉, 张道祥, 尹红云. 一类带Beddington -DeAngelis 功能反应的基于比率依赖的三种群扩散捕食者-食饵系统的周期解[J]. 生物数学学报, 2012, 27(2): 213-223.
|
| [11] |
LIU MENG, WANG KE, WU QIONG. Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle[J]. Bulletin of Mathematical Biology, 2011, 73:1969-2012.
|
| [12] |
ZHANG TONGQIAN, MA WANBIAO, MENG XINZHU. Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input[J]. Advances in Difference Equations, 2017, 1: 1-17.
|