taptap下载安装安卓学报

• 民用航空 • 上一篇    下一篇

航线旅客流量组合预测模型

樊玮,朱杰杰   

  1. (taptap下载安装安卓计算机科学与技术学院,天津300300)
  • 收稿日期:2016-12-08 修回日期:2017-03-02 出版日期:2017-10-25 发布日期:2017-12-14
  • 作者简介:樊玮(1968—),男,陕西乾县人,教授,博士,研究方向为数据挖掘、计算机软件理论与应用和智能信息处理.
  • 基金资助:
    国家自然科学基金项目(U1333109);中央高校基本科研业务费专项(3122016B006)

Combined forecasting model for passenger traffic volume on route

FAN Wei, ZHU Jiejie   

  1. (College of Computer Science, CAUC, Tianjin 300300, China)
  • Received:2016-12-08 Revised:2017-03-02 Online:2017-10-25 Published:2017-12-14

摘要: 航线旅客流量预测是航空公司航线网络优化的关键技术,传统的预测方法包括回归法、时间序列法等面向旅客订座数进行预测,鲜见考虑航线旅客流量数据较强的随机性和持续增长特性。为了解决上述问题,该研究在回归法的基础上分别基于两种不同的参考期进行预测,并提出一种组合预测模型。该模型的构建分为4 个阶段院淤将传统的订座数预测转换为对客座率的预测,并对客座率数据的一阶累加平滑处理,使得研究目标曲线变得平滑且单调;于采用DOW 策略的回归法模型预测目标年份的数据;盂以相邻年度同期拟合曲线的点差值来模拟年度增长量,建立预测模型;榆针对第2、3 阶段两种模型的预测结果,取加权平均值,建立新的组合预测模型。该研究选取某航空公司2011要2015 年全年XMNPEK航段客座率数据为依据,预测2016 年上半年的客座率数据。对比传统的回归法、时间序列法两种模型的预测结果,平均绝对误差由原来的4.76 和4.21 缩减到3.77,预测的准确性有明显提高。

关键词: 航线旅客流量, 组合预测, 线性回归, 时间序列

Abstract: Prediction of passenger traffic volume on route is one of the most important technologies of route network optimization. Traditional prediction method is based on passenger booking data. Generally used models include regression method, time series method and so on. However, these models consider less about the randomness of route flow data and the continuous growth of passenger volume. In order to solve these problems, combined forecast model is proposed based on regression method, which rely on two different reference periods.Construction of the model is divided into four stages: a. using load factor data to forecast and the visiting rate data of first-order accumulative smoothing makes the target curve becomes smooth and monotonous; b. using DOWmethod to predict the target year data; c. using the fitting curve of the adjacent point value to simulate the annual growth amount and build a forecasting model; d. taking average weighted value based on forecasting results from the above two stages, and establishing a new combined forecasting model. XMNPEK segment guest rate data of an airline in 2011-2015 is used to predict the load factor data for the first half of 2016. Comparedmwith traditional regression method and time series method, mean absolute error of the current method is reduced from 4.76 and 4.21 to 3.77 and the prediction accuracy is improved obviously.

Key words: passenger traffic volume on route, combined forecasting, linear regression, time series

中图分类号: 

Baidu
map