taptap下载安装安卓学报

• 民用航空 •    下一篇

基于K 近邻模型的空中交通流量短期预测

赵元棣,陈俊夫,刘泽宇,盛受琼,白志建   

  1. (taptap下载安装安卓a.空中交通管理学院;b.理学院,天津300300)
  • 收稿日期:2016-12-08 修回日期:2017-03-07 出版日期:2017-10-25 发布日期:2017-12-14
  • 作者简介:赵元棣(1983—),男,天津人,助理研究员,博士,研究方向为空管数据挖掘与处理.
  • 基金资助:
    国家自然科学基金项目(U1533106)

Short-term air traffic flow forecast based on K-nearest neighbor algorithm

ZHAO Yuandi a, CHEN Junfua, LIU Zeyua, SHENG Shouqiongb, BAI Zhijiana   

  1. (a. College of Air Traffic Management;b. College of Science, CAUC, Tianjin 300300, China)
  • Received:2016-12-08 Revised:2017-03-07 Online:2017-10-25 Published:2017-12-14

摘要: 为了准确预测空中交通短期流量,减轻空管协调压力,基于K 近邻算法构建了空中交通短期预测模型。首先,通过多次取K 值比较相对误差来确定合适的K 值。之后,对原有的K 近邻模型进行改进,引入空间参数,提出了3 种状态向量组合的K 近邻模型:时间维度模型、向台航路-时间维度模型与时空参数模型。以某扇区雷达数据对该模型进行检测,结果表明:同时引入时空参数的K 近邻模型误差最小,平均为14.16%;基于指数权重的距离衡量方式均能达到预测精度优化的效果;高斯权重预测法在时间维度模型下优于反函数法,引入空间参数则反之;指数权重距离下的反函数法预测的时空参数模型误差为13.94%。改进后的K 近邻模型对不同流量情况都具有普适性,预测结果可为空中交通流量管理提供理论参考。

关键词: 空中短期流量预测, K 近邻, 状态向量, 时空参数, 高斯函数

Abstract: It's worth to predict available short-term air traffic flow and reduce ATCO workload. An air traffic flow model is built based on K-nearest neighbor. First, relative errors from different K values are compared to determine the appropriate K values. After that, space parameter is introduced to improve the model. Then these three kinds of state vectors are combined and new K-nearest neighbor models are proposed including time dimension model, to route-time dimension model and time-space parameter model. Radar data within a certain sector is used to test K-neighbor model, showing out that K-nearest neighbor model with time-space parameter has minimum error,whose average error equals to 14.6%. Distance measuring method based on weight index can attain the goal of prediction accuracy optimization. Gaussian function can produce a better result under time parameter model while it is weaker when space parameter is taken into consideration. Statistics show prediction's error is only 13.94% under the index weight distance method of inverse function model with time-space parameter. The improved K -nearest neighbor model has applicability for different traffic situations and strong portability for complicated air traffic situation of China.

Key words: short-term air traffic flow prediction, K-nearest neighbor model, state vector, space parameter, Gaussian
function

中图分类号: 

Baidu
map