taptap下载安装安卓学报

• 管理科学 • 上一篇    下一篇

基于SARIMA和RBF神经网络的机场货运量预测

邢志伟1,李学哲1,2,罗谦2,冯文星1,2,白楠1,2,潘野2,罗沛2   

  1. (1.taptap下载安装安卓航空自动化学院,天津300300;2.中国民用航空局第二研究所,成都610041)
  • 收稿日期:2015-10-20 修回日期:2015-12-16 出版日期:2016-10-19 发布日期:2016-12-06
  • 作者简介:邢志伟(1970—),男,天津人,研究员,博士,研究方向为民航装备与系统、民航智能规划与调度
  • 基金资助:

    国家科技支撑计划(2012BAG04B02);国家自然科学基金项目(U1233118、U1333122、U1233124);中央高校基本科研业务费专项(3122014P003)

Airport cargo forecasting based on SARIMA and RBF neural network

XING Zhiwei1, LI Xuezhe1,2, LUO Qian2, FENG Wenxing1,2, BAI Nan1,2, PAN Ye2, LUO Pei2   

  1. (1.College of Aeronautical Automation, CAUC, Tianjin 300300, China;2. Second Institute of CAAC, Chengdu 610041,China)
  • Received:2015-10-20 Revised:2015-12-16 Online:2016-10-19 Published:2016-12-06

摘要:

针对机场货运量预测不能满足机场实际运行精度等缺点,提出一种季节性ARIMA 和RBF 神经网络集成模型预测机场货运量,该模型首先利用季节性ARIMA模型预测机场货运量线性部分,然后用RBF 神经网络模型预测机场货运量非线性部分,最后把非线性部分预测结果作为线性部分预测结果的补偿,得到最终预测结果。实验结果表明,新模型可以有效结合季节性ARIMA 和RBF 神经网络各自的优点;相对单一季节性ARIMA 模型和单一RBF神经网络模型预测精度分别提高了6.30%和3.32%,预测精度满足机场实际运行要求。

关键词: 机场货运量, 季节性ARIMA, RBF 神经网络, 集成, 预测

Abstract:

The model of integrated seasonal ARIMA and RBF neural network (SARIMA-RBF) is proposed to solve the problem that airport cargo forecasting accuracy can not meet the actual operation of the airport. In the SARIMARBF,the first use of seasonal ARIMA is to forecast the linear part of airport cargo, and then to forecast the nonlinear part of airport cargo with RBF neural network, finally the nonlinear forecasting result is taken as the compensation of linear forecasting result to get the final forecasting result. Experimental results show that the new model can be combined with respective advantages of seasonal ARIMA and RBF neural network. The new model compared with single seasonal ARIMA model and single RBF neural network model forecasting accuracy are improved by 6.30% and 3.32%; and its forecasting accuracy can meet the actual operation of the airport.

Key words: airport cargo, SARIMA, RBF neural network, integrate, forecasting

中图分类号: 

Baidu
map